Music Composition using the
EMILE Grammar Inductor

David Ortega-Pacheco and Hiram Calvo

Centro de Investigacion en Computacién, Instituto Politécnico Nacional,
Av. Juan de Dios Bitiz s/n, esq. Av. Mendizibal, México, D. F., 07738. México

david82d@gmail.com, healvo@cic.ipn.mx www.hiramealvo.com

Abstract: We use the grammar inference engine EMILE for automatic music
generation. The input to this algorithm is a collection of texts and then, based in
the context of each word, it infers certain grammar rules, This engine has been
used mostly to infer natural language grammar rules. In this work, we used the
collections of MIDI music files from three classical music composers: Johann
Sebastian Bach, Frédéric Chopin and Claude Debussy. We processed each file
so that each sentence is formed from the notes found in a musical bar; each
word is a musical note with a specific length and volume. We experimented
with the capability of creating non-crossing compositions following Pedro P.
Cruz-Alcézar, Enrique Vidal-Cruz, 1997. That is, we trained the grammar
inductor with the compositions of certain composer, then generated a new
composition, and finally we compared it statistically with the original
compositions to obtain a degree of similarity. We expected the compositions C;
obtained when training with a composer 4 to have a lower coefficient of
similarity when they are compared with the corpus of composer B. These results
are presented in incremental intervals to analyze the impact of the size of the
training corpus in the grammar induction process.

Keywords: Music Composition, Grammar Induction, EMILE Grammar
Inductor.

1 Introduction

There are several techniques for automatic music composition such as Markov chains
(4, 9], fractals [16], chaotic systems [10], cellular automata [3], artificial neural
networks [11], grammars (2], etc. In particular, systems for music composition based
on grammars have used algorithms such as L-systems [13], and grammar induction
algorithms like Sequitur [5].

The goal of grammar induction is to learn in an unsupervised way the syntax of a
particular language from a corpus of this language. Grammar induction algorithms are
used in several areas, for example computational linguistics, natural language
processing, bio-informatics, time series analysis, computer music, etc. Particularly,
for automatic music composition and music style recognition some commonly used
algorithms are ECGI, K-TSI and ALERGIA [6, 7].
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In this work we use one of the existing algorithms for grammar induction: EMILE
(Entity Modeling Intelligent Learning Engine) [1, 8, 15] for composing music
automatically. As far as we know, EMILE has not been used for this purpose.

A particular problem we faced was evaluation—many works which use formal
grammars for musical composition generally do not include an objective analysis of
the resulting compositions; it is very difficult to tag neutrally if a musical composition
is good or not [6, 7]. As an immediate workaround, we propose carrying out a
statistical test of similarity between each new composition &; versus each training
corpus C, to obtain a degree of similarity between the new composition &; and each
training corpus C;. The degree of similarity may define the quality of each new
composition k;, and finally the average of the similarities of various compositions may

define the algorithm performance for this application.

2  EMILE Grammar Inductor

EMILE (Entity Modeling Intelligent Learning Engine) is an unsupervised method for
grammar induction and it is a method based on categorical grammars. The algorithm
tries to obtain the language’s grammatical structure using positive samples. The
EMILE analysis is based on finding each word’s context into each sentence
(delimited by a dot (.)) in the training corpus and then carrying out two clustering
processes for obtaining a context free grammar which represents the analyzed
language (Fig. 1). EMILE can generate new sentences by means of the inducted

grammar rules (Fig. 2). [1, 8, 15]
testdata.txt

/the fox jumped. the dog jumped.
the quick brown fox jumped.

the lazy dog jumped.

the fox jumped over the dog.
the dog jumped over the fox.
the quick brown fox jumped over the dog.

the lazy dog jumped over the fox.

the fox jumped over the lazy dog.

the dog jumped over the quick brown fox.

\ the lazy dog jumped over the quick brown foy

2 Induced grammar rules

[0] = [18] dog jumped .

[0] = the [4] jumped .

[0] = [18] dog jumped over the [4] .
(0] = the [4] jumped over [18] dog .
[4] > fox

(4] = quick brown [4]

[18] = the

[18] = the lazy

Fig. 1. EMILE grammar induction process [15]

EMILE

m_} 1] domimoed N Example of new sentence
[0] = the [4] jumped . the quick brown fox jumped over the lazy dog
[0] = [18] dog jumped over the [4].
[0]=> t-he [4] jumped over [18] dog - [0] = the [4] jumped over [18] dog.
[4] > fox [4] = quick brown [4]
14] = quick brown [4] [4] > fox
[18] > the [18] > the lazy
\[18] -> the lazy /

Fig. 2. New sentence generation by EMILE [15]
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3 Music Composition using EMILE

The music composition procedure consists of three stages: Obtain the training corpus,
Grammar induction and Music composition. We explain each of them below.

3.1 Training corpus

The process to obtain the training corpus for the EMILE grammar inductor is shown
in Fig. 3. We explain each part below.

CSV Corpus
0, 0, Header, 1, 2, 480

1, 0, Start_track
. Training Corpus
MIDI Collection j mids
e 0.0, End_of_file 0760060064 ... 0770060064.
o f1- h 0, 0, Header, 1, 3, 120 | '
HiHdgddy 1,0, Start_track - =
REREMID| Algorithm TCorp E
e : 0610120064 ... 0810240064,
EEEEMID|
EREMID] . :
= 0, 0, End_of _file
0, 0, Header, 1, 3, 480 :
1.0, Start_track 0610120064 ... 0810240064.
\O, 0, End_of_file /

Fig. 3. Process to obtain the training corpus

The musical samples (MIDI Collection) for the Training corpus process are
standard MIDI (Musical Instrument Digital Interface) files. We will focus in the
events part of a Standard MIDI File [14]: Header, Time_signature, Note_on,
Note_off, Note number, Velocity, Time clock, Start_track and End_track.

We convert each MIDI file to a text readable format using the CSVMIDI and
MIDICSV programs'. This programs, transform a MIDI file to a CSV (Comma-
Separated Values) text file and viceversa. CSV files are commonly used to store and
transport tabular data between different applications. Fig. 4 shows the process to
convert a MIDI file in CSV text format and viceversa.

ﬂo. Header, 1, 2, 480

1, 0, Start_track

1, 0, Time_signature, 4, 2, 24, 8|
1, 0, Tempo, 500000

W 1,0, End_track

['ﬂ, 2, 0, Start_track

.“, 2,0, Note_on_c, 1,79, 81

225 2, 960, Note_off ¢, 1,79, 0

. . 2, 960, Note_on_c, 1, 81, 81

File.mid E 2, 1920, Note_off_c, 1, 81, 0

2, 1920, Note_on_c, 1,77, 81
2, 1920, End_track

@, End_of_file /

File.csv
Fig. 4. MIDI file in CSV format.

I By John Walker, available from http:/www.fourmilab.ch/webtools/midicsv/
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We used the MIDICSV tool for obtain the CSV corpus by the MIDI Collection and
then extracted the musical events (Header, Time_signature, Note_on, Note_off, Note
number, Velocity, Time clock, Start_track and End_track) to create the training
corpus for the grammar inductor.

Musical events express the length of each bar, the note number, length and velocity
of each note into each bar. We represented each bar in the training corpus with one
text line delimited with a dot (.), and each note number and their characteristics of
length and velocity with a number of 10 digits, where the first three digits of left to
right represent the note number, the next four represent the note length and the next
three represent its velocity and each number is separated with one space. Thus, the
training corpus contains in each text line one musical sentence (bar), where each
musical word represents the characteristics of one note (note number, length and
velocity), see Fig. 5.

0710048072 0680048072 .. 0650048072 0640048072 .
Giddsdidsdedrdsdydig  didydydidsdedrdgdodio ... didadhdedsdsdrdgdhdio  diddydidsdgdrdsdadio -

T [ T
Note Length  Velocity, Note Length Velocity,
number number
oo J L " I J
T
musical word musical word ,,
Bar,
musical sentence |

Fig. 5. Format for each text line into the training corpus

We implemented the algorithm TCORP to obtain the length of each bar, the
characteristics of each note and the training corpus with the previous scheme for each
text line. The pseudo-code for the algorithm is shown below:

Algorithm TCorp

Input: CSV Corpus
Output: Training Corpus

Start
1. Obtain the bar length for each Track.
2. For each note, sort by timing the contiguous Note_on and Note_off
events.
3 If the Track does not begin in Time 0 or there is a time space
between notes, then add a silence note.
4. Obtain the number, length and velocity for each note in the CSV
corpus.
5. End each note event in a fixed time according to a multiple of the
bar length.
6. Add to the training corpus each note with its codified values.
7. If finding an end of bar, then go to next text line of the
training corpus.
8. Repeat the previous steps for the remaining tracks in the CSV
Corpus.
End
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3.2 Grammar induction

The input to FTMILE. is the Training Corpus obtained in the previous process. Once
the grammar induction on the training corpus is done by EMILE, the result is a
hierarchical structure of composition rules (Fig. 6).

Training Corpus

0760060064 ... 0770060064,
g Grammar Rules

[0] --> [7] 0810240064 ... [2] ... 0810240064 .

0610120064 ... 0810240064, [0] > 0760060064 ... 7] ... 0760060064 [5)] .

0610120064 ... 0810240064, (71507000064

Fig. 6. Grammar induction process

3.3 Music composition

By means of the induced grammar, EMILE can generate new bars which will form a
new musical composition. To convert this composition to the MIDI format, we used
the algorithm NComp. This algorithm converts the new musical composition to CSV
format and then, using the CSVMIDI program we obtain the MIDI file of the new
composition (Fig. 7).

CSV New Composition
Header, 1, 2, 480

+0, Start_track

] i
R Conssiion Time_signature, 4, 2,24, 8 MIDI

1
1
1

0770060064 ... 0810060064.

0
0
o o
, 0, Tempo, 500000 New Composition
0,
0,
0,

()
1,0, End_track
W = n
- 2,0, Start_track 1
Algorithm NComp X 2, 0. Note_on_c, 1, 79, 81 H1,
2,960, Note_off_c, 1, 79,0 1

2,960, Note_on_c, 1, 81, 81
2, 1820, Note_off ¢, 1,81,0

EMILE

0610120064 ... 0760240064,

2, 1820, Note_on_c, 1,77, 81
2,1820, End_track

\0, 0, End_of_file /

Fig. 7. Music composition process

The pseudo-code for the algorithm NComp is shown below:

Algorithm NComp

Input: New Composition
Output: CSV New Composition

Start
1. Determine the bar length and duration of the Track.
2. Print Start track event.
3. Obtain the value of the length, number, and velocity of each note.
4. Write the musical events Note_on and Note_off for each note until
completing the duration of the Track.
5. Print End_track event.
6. Print End_of_file event.
End
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4 Similarity Analysis

The similarity analysis is based on a comparison of each new comgosition C; obtained
by a corpus A (Composer A) with the same corpus A and with other corpus B
(composer B). We implemented the similarity measures of Precision and Recall as
follows:

Precision. Defined as a measure of the proportion of selected items that the system
gotright [12]:
in 1)
in+nn

precision =

Recall. Defined as a proportion of the target items that the system selected [12]:

in 2)
in+cn

recall =

In the Fig. 8 we show the areas corresponding to new notes (nn), intersecting notes
(in) and corpus notes (cn).

~

i

New Composition Training Corpuy

Fig. 8. Diagram for nn, in and cn areas for precision and recall

For a good performance of the grammar inductor for this application, we expected
that a new composition obtained by a corpus A (Composer A) will have an Precision
A higher than Precision B, and an Recall A higher than Recall B, when is compared
with the corpus A and other corpus B (composer B), this may shown that the new
composition is an new composition of the composer A. Fig. 9 show samples for a
good and bad performance for the grammar inductor.
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New—)!

Composition

New =

Composition

a) Good performance. The new composition A is b) Bad performance. The new composition is not
in the style of composer A (corpus A) because  apew composition of composer A because contains
contain bars which are not completely presentinthe  many bars which are present in the corpus of
corpus B (composer B) and is a new composition of composer A.
composer A because contains bars which are not
completely present in the corpus of composer A.

c) Bad performance. The new composition is a d) Bad performance. The new composition A is a
crossing composition because contains the same  crossing composition because is in the style of
number of bars for a composer A and composer B. composer B (corpus B) because contain bars which

are not completely present in the corpus A
(composer A).

Fig. 9. Good and bad performance for the grammar inductor

5 Experiments and Results

For the experimentation we chose three classical music composers: Johann Sebastian
Bach, Frédéric Chopin and Claude Debussy. The MIDI corpus of each composer
contains 50 monophonic Tracks. We carried out 2 experiments.

5.1 Experiment 1

Generate for each composer his corresponding training corpus.

Obtain for each composer his grammar rules (rules for composition).

Create 10 new compositions for each composer.

Carry out the similarity analysis between each new composition obtained
and the corpus for each composer.

5. Repeat the previous steps for each training corpus of each classical music
composer.

Table 1. Average Precision.

orpus [ Bach | Chopin | Debussy
Compositions

Bach 91.476 | 20.928 19.621
Chopin 21.682 | 89.873 | 44.822

Debussy 33.034 | 38.137 | 93.977
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Table 2. Average Recall

orpus | Bach | Chopin | Debussy
Compositions

Bach 3.488 | 0.059 0.057
Chopin 0.1 0.177 0.055
Debussy 0.179 | 0.1 0.44

5.2 Experiment 2

Consisted on carrying out experiment 1 varying the size of the training corpus using
20, 40, 60 and 80 percent of the original training corpus of each composer.

Bach compositions vs Corpora
100
90 > < = 4
80
S 10 Co Bach
S 60 —o— Corpus Bacl
§ 50 —g— Corpus Chopin
£ 40 —A— Corpus Debussy
e 30 Ar /Q\
20 \%—.—-@-——
10 ]
0 i I |
20% (10 40% (20 60% (30 80% (40 100% (50
tracks) tracks) tracks) tracks) tracks)
% Corpus

Fig. 10. Precision obtained by varying the size of the training corpus of Bach

Bach compositions vs Corpora

5 4 - ..;
45 t
4
35 VA
L7 iy / —o— Corpus Bach
§ 25 7 —8— Corpus Chopin
« 1: ——. 04 —A— Corpus Debussy
i 7
0.5
0 +—8 B 8
20% (10 40% (20 60% (30 80% (40 100% (S0
tracks) tracks) tracks) tracks) tracks)
% Corpus

Fig. 11. Recall obtained by varying the size of the training corpus of Bach



Music Composition using the EMILE Grammar Inductor 349

Chopin compositions vs Corpora

1gg }/ : 4£__ — ! iy ol A.,_-E._‘

60 —o— Corpus Bach
=i —8— Corpus Chopin
30 —4— Corpus Debussy

Precision
o
o

10 T

20% (10 40% (20 60% (30 80% (40 100% (50
tracks) tracks) tracks) tracks) tracks)

% Corpus

Fig. 12. Precision obtained by varying the size of the training corpus of Chopin.

Chopin compositions vs Corpora

0.4 1 |
0.35 ;
i
0.3 \ 1
L 025 &7 { | —e—Corpus Bach
0.2 S Corpus Chopin
g 015 = \s; —A— Corpus Debussy
0.1 4 b i 98 \
0.05 % Q
0 i —
20% (10 40% (20 60% (30 80% (40 100% (50
tracks) tracks) tracks) tracks) tracks)
% Corpus

Fig. 13. Recall obtained by varying the size of the training corpus of Chopin

Debussy compositions vs Corpora

100
90 4 zx
80
70
§ o0 —o— Corpus Bach
§ 50 —8— Corpus Chopin
o gg —A— Corpus Debussy
20 :#
10
e I 1
20% (10 40% (20 60% (30 80% (40 100% (50
tracks) tracks) tracks) tracks) tracks)
% Corpus

Fig. 14. Precision obtained by varying the size of the training corpus of Debussy

Debussy compositions vs Corpora

5 y
45 !
4 |
35 ZENAN : -
= 3 N —o— Corpus Bach
325 \ —B— Corpus Chopin
&2 \ —A— Corpus Debussy
1.5
1 \
0.5 A
0 Q
20% (10 40% (20 60% (30 80% (40 100% (50
tracks) tracks) tracks) tracks) tracks)
% Corpus

Fig. 15. Recall obtained by varying the size of the training corpus of Debussy
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6 Conclusions and Future Work

In this work we have presented a new musical composition method using the EMILE
Grammar Inductor; in addition we have proposed a similarity analysis that may define
the quality of the newly obtained musical compositions.

The results from the analysis of similarity in the experiment 1, show that EMILE
can generate new musical compositions (new non-crossing compositions) in the style
of a composer A, with a training corpus with a size of 50 monophonic tracks. The
new compositions for a composer A contain bars which are not present in the training
corpus of another composer B (See Table 1. Average Precision), and the compositions
obtained are not merely repetitions of fragments of the compositions in the learning
corpus because the new compositions contain bars which are not completely present
in the training corpus of composer A—though it contains more bars when is
compared with the training corpus of another composer B (See Table 2. Average
Recall).

This may suggest that EMILE can generate compositions in the style of a
composer A, and they are new compositions why they are not copies of some
composition present in the training corpus.

Our results obtained by the experiment 2, show that the size of the training corpus
does not have a relevant impact in the similarity analysis for each training corpus of
each composer (Fig. 10 to Fig. 15), because the results of Precision and Recall for
each composer are similar at the results obtained in the experiment 1.

As a future work, we plan to compare this music composition method using other
algorithms of Grammar Induction, different scheme for represent the notes and their
characteristics (Note number, Length and Velocity), increment the size of the training
corpus and incorporate polyphonic tracks.
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